Toeplitz Quantization and Asymptotic Expansions: Geometric Construction⋆
نویسنده
چکیده
For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of “star-restriction” (a real analogue of the “star-products” for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion.
منابع مشابه
m at h . D G ] 2 4 Ju l 2 00 6 BERGMAN KERNELS AND SYMPLECTIC REDUCTION
We generalize several recent results concerning the asymptotic expansions of Bergman kernels to the framework of geometric quantization and establish an asymptotic symplectic identification property. More precisely, we study the asymptotic expansion of the G-invariant Bergman kernel of the spinc Dirac operator associated with high tensor powers of a positive line bundle on a symplectic manifold...
متن کاملOn the Weyl law for Toeplitz operators
A Weyl law for Toeplitz operators was proved by Boutet de Monvel and Guillemin ([BG], Theorem 13.1), using the theory of Fourier-Hermite distributions and their symbolic calculus based on symplectic spinors. The result holds in the setting of so-called Toeplitz structures, a generalization of strictly pseudoconvex domains, and the operators involved act on certain spaces of half-forms. The circ...
متن کاملToeplitz Operators on Symplectic Manifolds
We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established. 0. Introduction Quant...
متن کاملQuantization of Multiply Connected Manifolds
The standard (Berezin-Toeplitz) geometric quantization of a compact Kähler manifold is restricted by integrality conditions. These restrictions can be circumvented by passing to the universal covering space, provided that the lift of the symplectic form is exact. I relate this construction to the Baum-Connes assembly map and prove that it gives a strict quantization of the manifold. I also prop...
متن کاملCoherent States in Geometric Quantization
In this paper we study overcomplete systems of coherent states associated to compact integral symplectic manifolds by geometric quantization. Our main goals are to give a systematic treatment of the construction of such systems and to collect some recent results. We begin by recalling the basic constructions of geometric quantization in both the Kähler and non-Kähler cases. We then study the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009